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Abstract Quantitative trait locus (QTL) analysis on
pooled data from multiple populations (pooled analysis)
provides a means for evaluating, as a whole, evidence for
existence of a QTL from different studies and examining
differences in gene effect of a QTL among different
populations. Objectives of this study were to: (1) develop
a method for pooled analysis and (2) conduct pooled
analysis on data from two soybean mapping popula-
tions. Least square interval mapping was extended for
pooled analysis by inclusion of populations and cofactor
markers as indicator variables and covariate variables
separately in the multiple linear models. The general
linear test approach was applied for detecting a QTL.
Single population-based and pooled analyses were con-
ducted on data from two F2:3 mapping populations,
Hamilton (susceptible) · PI 90763 (resistant) and
Magellan (susceptible) · PI 404198A (resistant), for
resistance to soybean cyst nematode (SCN) in soybean.
It was demonstrated that where a QTL was shared
among populations, pooled analysis showed increased
LOD values on the QTL candidate region over single
population analyses. Where a QTL was not shared
among populations, however, the pooled analysis
showed decreased LOD values on the QTL candidate
region over single population analyses. Pooled analysis

on data from genetically similar populations may have
higher power of QTL detection than single population-
based analyses. QTLs were identified by pooled analysis
on linkage groups (LGs) G, B1 and J for resistance to
SCN race 2 whereas QTLs on LGs G, B1 and E for
resistance to SCN race 5 in soybean PI 90763 and PI
404198A. QTLs on LG G and B1 were identified in both
PI 90763 and PI 404198A whereas QTLs on LG E and J
were identified in PI 90763 only. QTLs on LGs G and B1
for resistance to race 2 may be the same or closely linked
with QTLs on LG G and B1 for resistance to race 5,
respectively. It was further demonstrated that QTLs on
G and B1 carried by PI 90763 were not significantly
different in gene effect from QTLs on LGs G and B1 in
PI 404198A, respectively.

Introduction

Very often, more than two mapping populations are
studied for the same traits or related traits. Analysis
on pooled data from multiple mapping populations
(pooled analysis) was suggested by Lander and
Kruglyak (1995). Pooled analysis is a good method for
evaluating the overall evidence for existence of a
quantitative trait locus (QTL) on a region or a linkage
group (LG) from different studies where the results
may be conflicting (Lander and Kruglyak 1995). It can
also be used for statistically examining differences in
gene effect of a QTL among different lines (popula-
tions) (Walling et al. 2000; Li et al. 2005) whereas
single population-based QTL analyses do not provide
direct comparisons of a QTL among different popu-
lations. Information on differences of a QTL among
different lines are useful for selection of parents in
breeding and will aid for a novel strategy (multiple
cross mapping) of QTL cloning (see Discussions). In
addition, pooled analysis is expected to increase the
power and precision of QTL detection (Walling et al.
2000; Heo et al. 2001).
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Single population-based statistical methods are well
developed for QTL analysis (Lander and Bostein 1989;
Zeng 1994; Haley and Knott 1992; Sen and Churchill
2001). Interval mapping (IM) (Lander and Bostein
1989) and composite interval mapping (CIM) (Zeng
1994) are the commonly used methods. Both methods
use flanking markers for delimiting one putative QTL
and the maximum likelihood for estimating mapping
parameters but CIM also uses cofactor markers to
reduce the interfering effects on QTL analysis of QTLs
located elsewhere on the genome. All QTL mapping
data analyses were based on single populations, with
few exceptions from animal species where pooled
analysis was conducted (Walling et al. 2000; Li et al.
2005). Walling et al. (2000) extended least square
interval mapping (LSIM) (Haley et al. 1994) for
analysis on combined data from seven porcine popu-
lations. Li et al. (2005) extended the Bayesian QTL
analysis method (Sen and Churchill 2001) for analysis
on combined data from four mouse populations. The
former one (Walling et al. 2000) is simple in compu-
tation and general statistical software such as SAS is
applicable. The latter one (Li et al. 2005) adopted a
new QTL analysis method and requires special soft-
ware. Some earlier studies (Rebai and Goffinet 1993;
Xu 1998; Liu and Zeng 2000) developed QTL analysis
methods for data which may be produced from several
populations. These studies, however, did not handle
key issues that pooled analysis faces such as: (1) dif-
ferent sets of molecular markers used in different
populations, with some markers in common, and (2)
phenotypic data collected under different conditions.
All these studies analyzed computer-simulated data
using their methods.

Least squares interval mapping was originally devel-
oped for analyses on single populations from crosses
between inbred lines (Haley and Knott 1992) and from
crosses between outbred lines (Haley et al. 1994) for
increased efficiency in computation. It also uses flanking
markers for delimiting one putative QTL but uses the
least square method instead of the maximum likelihood
method for estimating mapping parameters. Walling
et al. (2000) extended LSIM (Haley et al. 1994) for
pooled analysis. But they did not discuss the genetic
basis of pooled analysis and did not clearly give the
formula of the test statistics. The power and precision of
QTL detection may be compromised and results may be
biased due to ignorance of the interfering effects of
QTLs located elsewhere on the genome (Jansen 1993;
Zeng 1993).

Objectives of this study were to: (1) extend LSIM by
Haley and Knott (1992) for analysis on pooled data
from multiple populations by inclusion of populations
and cofactor markers as indicator variables and covar-
iate variables separately in multiple linear regression
models, and (2) conduct pooled analysis, as a demon-
stration example, on data from two soybean mapping
populations for resistance to SCN.

Development of methods

Development of linear regression models and least
square interval mapping pooled analysis:
two populations

In this section, we consider two mapping populations
(each of them are F2s from crosses between two inbred
lines) and assume that a quantitative trait is controlled by
one gene. In the following sections, we will extend tomore
than two populations and assume that a quantitative trait
is controlled by polygenes. Suppose that we want to test
for a QTL at one position flanked by two markers on a
composite linkage map (see below). Let the alternative
alleles of QTL be Q and q in the first population and
genetic values of QQ, Qq and qq be a + a, a + d and be
a - a, respectively, where a is the mid-parent value, a is the
additive gene effect and d is the dominant effect. Let the
frequencies of QQ, Qq and qq be separately p1, p2 and p3
given the genotype of flanking markers in the F2 gener-
ation. The expected genotypic value (mean) of individuals
given the genotype of flanking markers can be written as
g=a + aXa + dXd, where Xa=p1–p3 and Xd=p2. Xa

and Xd are known for a given position of a putative QTL
and can be obtained using the formulae described in
column 1 and column 2 of Table 1 in Haley and Knott’s
(1992) paper. Now assume that one QTL also exists at the
same position on the composite linkagemap in the second
population (but likely it is flanked by different markers)
and their alternative alleles are Q¢ and q¢. Let genetic
values of Q¢ Q¢, Q¢q¢ and q¢q¢ in the second population be
(a + b) + (a + da), (a + b) + (d + dd) and (a + b) –
(a + da), respectively, where b, da and dd are differences
for mid-parent value, additive and dominant effects be-
tween the first population and the second population. The
expected genetic value in the second population can be
written as g=(a + b) + (a + da)Xa + (d + dd)Xd. We
can write the statistical model as

Yji ¼ aþ aXa þ dXd þ bX1 þ daXaX1 þ ddXdX1 þ eji ðFÞ

where Yji is the phenotype of the ith individual in the jth
population. Here, j=1, 2. Xa, Xd, a, b, a, d, da and dd are
the same as described above. It is noted that Xa is con-
stant over generations and Xd will be decreased by half
every generation. This gives a desirable characteristic:
the following test statistic F* (T1) is not affected by
generation in which phenotyping is conducted if phe-
notypic data is collected from the same generation for
different populations. This characteristic is useful, be-
cause in practical QTL mapping F2s are often used for
molecular marker genotyping and their F2:3 or later
generations for phenotyping. X1 is an indicator variable,
taking X1=1 if the second population and 0 otherwise
(here, the first population). It is assumed that eji is
an identically and independently distributed normal
variable with mean zero and variance r2. No epistasis is
assumed.
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Assuming no QTL exists at the putative position in
any population, i.e., a = d = da = dd = 0, model (F)
will be reduced to:

Yji ¼ aþ bX1 þ eji ðR1Þ

Assuming no QTL exists at the putative position in
the first population, i.e., a = d = 0, the model (F) will
be reduced to:

Yji ¼ aþ bX1 þ daXaX1 þ ddXdX1 þ eji ðR2Þ

Assuming no QTL exists at the putative position in
the second population, i.e., a + da = d + dd = 0, the
model (F) will be reduced to:

Yji ¼ aþ bX2 þ aXaX2 þ dXdX2 þ eji ðR3Þ

where X2 = 1 if the first population and X2 = 0
otherwise (here, the second population).

Assuming QTL has the same effect in both popula-
tions, i.e., da = dd = 0, the model (F) will be reduced to:

Yji ¼ aþ bX1 þ aXa þ dXd þ eji ðR4Þ

Models (R1), (R2), (R3) and (R4) are called reduced
models (R) whereas model (F) is called a full model.

The general linear test approach (Neter et al. 1996) is
used to detect a QTL through comparison of the full
model (F) with the reduced models (R). Comparison of
the full model (F) with the reduced model (R1) (F vs.
R1) is to test if a QTL exists at a putative position.
Comparison of the full model with the reduced model
(R2) or (R3) (F vs. R2, F vs. R3) is to provide a test for
existence of a QTL in a specific population. Comparison
of the full model with the reduced model (R4) (F vs. R4)
is to determine if QTLs carried by different populations
have a difference in gene effect. Test statistic for com-

parison of any two models (F vs. R) is given by the
below formula:

F� ¼ SSEðRÞ � SSEðFÞ
dfR � dfF

=
SSEðFÞ

dfF
ðT1Þ

where SSE(F) and SSE(R) are error sum of squares
associated with the full model and reduced model sep-
arately and dfF and dfR are the degrees of freedom
associated with SSE(F) and SSE(R), respectively. F*
follows the F distribution when the reduced model
holds, with the numerator degrees of freedom dfR-dfF
and denominator degrees of freedom dfF. We recom-
mend that the P-value corresponding to the observed F*
value be used for reporting statistical evidence of exis-
tence of a QTL. The below equivalent means instead of
directly reporting P-values can be used:

LR ¼ �2 logðP Þ ðT2Þ
LOD ¼ �2 logðPÞ=4:6 ðT3Þ

where log is the natural logarithm and P is the proba-
bility value corresponding to the observed F* value. LR
follows the Chi square distribution with degrees of
freedom of 2. The above LR and LOD are comparable
separately to the LR (likelihood ratio, 2 df) and LOD
(logarithm of odds ratio, 2 df) that are usually used in
IM and CIM, because LR (4.6 LOD) obtained using IM
and CIM also follows the Chi square distribution with
degrees of freedom of 2.

Like IM and CIM, the above analysis (referred to as
LSIM pooled analysis) is conducted in a series of posi-
tions along the genome. The position with the largest
LR or LOD on a region or a whole chromosome is used
for giving the most likely position of a QTL. If LOD or
LR is greater than or equal to a pre-determined
threshold, a QTL is declared.

Table 1 Single population analyses using least square composite interval mapping

SCN races Population Linkage groups Positiona 1 LOD CIb LOD R2 (%)c

II Hamilton · PI 90763 G 0.0 0.0–6.0 6.5g 12.0
B1 118.5 106.5–122.5d 3.2f 5.6
J 77.5 63.5–89.5d 5.1g 9.2

Magellan · PI 404198A G 2.0 0.0–12.0 5.4g 9.8
B1 116.5 104.5–122.5d 5.5g 9.9

V Hamilton · PI 90763 G 2.0 0.0–10.0 4.9g 9.0
B1 110.5 92.5–120.5 5.8g 10.3
Ee 39.3 25.3–55.3 5.6g 10.3

Magellan · PI 404198A G 0.0 0.0–30.0 2.5 4.8
B1 112.5 104.5–122.5d 6.5g 12.4
N 52.3 38.3–60.3 3.0f 5.5

aDistance from the start of linkage group on the soybean composite linkage map
b1-LOD confidence interval
cA proportion of total variation explained by a QTL given the other QTLs (cofactor markers). It is defined as SSE(F)�SSE(R)/SSTO,
where SSE(F) is error sum of square associated with the full model (QTL exist at the putative position), SSE(R) error sum of square
associated with reduced model (no QTL exist at the putative position), and SSTO total sum of square
dThe end of the part of a linkage group that was searched for a QTL in this study
eTwo peaks occurred on this chromosome but their 1-LOD confidence intervals overlapped substantially (Fig. 2). One QTL was declared
for the peak with the highest LOD on this chromosome. The 1-LOD confidence interval covered the 1-LOD confidence intervals of both
peaks. In order to exclude or confirm that closely linked QTLs may exist, fine mapping is needed
fSuggestive QTL (LOD ‡ 3.0, genome-wise type I error = 0.63)
gSignificant QTL (LOD ‡ 4.0, genome-wise type I error = 0.05)
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Extension for more than two populations

In case of more than two populations, the above mul-
tiple linear models can easily be extended and the same
analysis can be conducted as above. k populations are
represented by k indicator variables X1,...Xj,...Xk, Xj

taking on the value 1 if observations (progeny individ-
uals) come from the jth population and 0 otherwise. The
full model can be written as:

Yji ¼ aþ b2X2 � � � þ bjXj þ � � � þ bkXk þ aXa þ dXd

þ d2;aXaX2 þ d2;dXdX2 þ � � � dj;aXaXj þ dj;dXdXj

þ � � � þ dk;aXaXk þ dk;dXdXk þ eji ðF0Þ

where the first and second subscripts of d are the pop-
ulation and additive effect (a) or dominant effect (d),
respectively.

Assuming that no populations have a QTL at the
putative position, i.e., a = d = d2,a = d2,d =
� � � = dj,a = dj,d = dk,a = dk,d = 0, the model (F¢) will
be reduced to:

Yji ¼ aþ b2X2 � � � þ bjXj þ � � � þ bkXk þ eji

We can also write model (F¢) as

Yji ¼ aþ b2X2 � � � þ bjXj � � � þ bkXk þ a1XaX1 þ d1XdX1

þ a2XaX2 þ d2XdX2 þ � � � ajXaXj þ djXdXj

þ � � � þ akXaXk þ dkXdXk þ eji ðF00Þ

where a and d are additive and dominant effects,
respectively, with the subscripts of a and d associated
with the corresponding population.

We can write models where it is assumed that some
populations have a QTL but other populations do not,
just by taking off from the model (F¢¢) the terms ajXaXj

+ djXdXj corresponding to the populations which are
assumed to have no QTL.

We can also write models where it is assumed that the
QTL has the same effect in some populations (say,
j,...,k). Let Xc = Xj + � � �+ Xk. The model (F¢) will be
reduced to:

Yji ¼ aþ b2X2 � � � þ bjXj þ bkXk þ aXa þ dXd þ d2aXaX2

þ d2dXdX2 þ � � � dj�1;aXaXj�1 þ dj�1;dXdXj�1

þ dc;aXaXc þ dc;dXdXc þ eji

We can write the other models we would expect to test
using the same approach.

Multiple QTLs: least square composite interval mapping
pooled analysis

A quantitative trait is controlled by polygenes. Detection
of a putative QTL at one position is affected by QTLs
located elsewhere on the genome (Haley andKnott 1992).
It was demonstrated that the gene effect of one QTL can
be absorbed by its linked markers (Jansen 1993; Zeng

1993). Cofactor markers have been used to reduce the
interfering effects of QTLs located elsewhere on the gen-
ome in CIM (Zeng 1994). Similarly, cofactor marker
terms can be added to the multiple linear models of LSIM
pooled analysis described above. LSIM pooled analysis
with inclusion of cofactor marker terms is referred to as
least square composite intervalmapping (LSCIM) pooled
analysis. Principles and methods for selection of cofactor
markers used in CIM (Zeng 1994; Basten et al. 2002) can
be applied. However, we recommend that QTL-linked
molecular markers detected separately for individual
populations using IM or CIM be used as cofactor
markers in the models, because too many cofactor
markers will reduce the degrees of freedom associated
with error sums of squares and may offset reduction of
error sum of squares due to introduction of cofactor
markers. Different cofactor markers may be used in dif-
ferent populations, because different QTLs may exist in
different populations. The cofactor marker terms can be

defined as
Pk

j

Pm

l
bjlMjliXj; where bjl is the partial regres-

sion coefficient of phenotype Yji on the lth marker in the
the jth population; Mjli is a known coefficient of the lth
cofactor marker in the ith individual of the jth popula-
tion, taking 1 for one homozygous genotype, 0 for the
heterozygous genotype and�1 for the other homozygous
genotype for F2 populations; Xj is population indicator
variable, as described above. The terms are added to the
full models and reduced models of LSIM. Like CIM, a
region of a length (window size) around the putative QTL
position being tested can be set so that no markers in this
region can be included as cofactor markers in themultiple
linear models (Basten et al. 2002).

Merging data from multiple populations

Different sets of molecular markers may be used in dif-
ferent populations, with some molecular markers in
common. This gives two challenges to pooled analysis:
(1) different linkage maps will be produced in different
populations, and (2) molecular marker information
from multiple populations cannot be directly merged for
pooled analysis. Pooled analysis is based on a composite
linkage map which is created using data from several
mapping populations (Stam 1993). Correct relative
ordering of markers is crucial for pooled analysis (Li
et al. 2005). In order to merge data from multiple pop-
ulations, the coefficients (Xa and Xd) of the additive and
dominant effects (see above) should be computed at the
same series of positions along the composite linkage
map for each population.

Stabilization of residual variances among populations

One important assumption for pooled analysis is that
the error term (eji) is identical among populations. The
pooled analysis is sensitive to violation of this assump-
tion (see below). Two factors may contribute to the
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violation: (1) phenotypic data may be collected from
different laboratories or conditions, and (2) different
populations may have different segregating QTLs. If the
error term is not equal, transformations (square root,
log and other transformations) should be applied (Li
et al. 2005). If transformed data fails to equalize the
error terms; or if the original data are obtained using
different methods or procedures; or if different popula-
tions are evaluated under different conditions; pheno-
typic data can be standardized to residual standard
deviation units (Walling et al. 2000).

Soybean mapping data analysis

Soybean mapping data

Data were collected from F2:3 families of crosses be-
tween ‘Hamilton’ and plant introduction (PI) 90763
(Guo et al. 2005) and between ‘Magellan’ and PI
404198A (Guo et al. 2006a) for resistance to soybean
cyst nematode (Heterodera glycines Ichinohe) (SCN) in
soybean (Glycine max (L.) Merr). PI 90763 and PI
404198A are resistant to SCN races 2 and 5. Hamilton
and Magellan are susceptible to all known SCN races.
Molecular marker data from Hamilton · PI 90763 and
Magellan · PI 404198A populations consisted of 176
and 182 co-dominant SSR loci, respectively. Both pop-
ulations had 74 molecular markers in common, ranging
from 1 to 7 for each LG. Phenotypic data for reaction to
SCN races 2 (HG type 1.2.5.7, PA 2) and 5 (HG type
2.5.7, PA 5) were collected under controlled conditions
in the greenhouse at the University of Missouri-
Columbia using the procedure described by Arelli et al.
(1997). The female index (Schmitt and Shannon 1992)
was used to measure reaction of soybean plants to SCN
races 2 and 5.

Data analysis

We checked the residual variances of two mapping
populations through regression of phenotypes on QTL-
linked markers detected in individual populations
(Table 5). We failed to stabilize the residual variances
between the two soybean populations using square root
and log transformations. Phenotypic values were stan-
dardized for pooled analysis in residual standard devi-
ation units for each population according to Walling
et al. (2000).

The below models were considered for pooled anal-
ysis: (1) a QTL exists in both populations (F), (2) no
QTL exists in any populations (R1), (3) a QTL exists in
Hamilton · PI90763 population only (R2), (4) a QTL
exists in Magellan · PI404198A only (R3), and (5) a
QTL has the same effect in both populations (R4). F vs.
R1 analysis, F vs. R2 analysis, F vs. R3 analysis and F
vs. R4 analysis were conducted using LSCIM and
LSIM. QTL-linked molecular markers detected in indi-

vidual populations using CIM (Table 5) were used for
cofactors in the LSCIM pooled analysis. In addition,
two populations were individually analyzed using
LSCIM.

The soybean composite linkage map (Song et al.
2004) was used for the analysis. The coefficients (Xa and
Xd) were computed at the same sets of positions (every
2 cM) along the map for Hamilton · PI 90763 and
Magellan · PI 404198A populations. All LGs except for
D1a were searched, with a total genome length of
1676 cM (66% of the whole genome). LG D1a was not
searched because of few SSRs.

The formula (T3), i.e., LOD, was used for reporting
the statistical evidence for a QTL. LODs=3.0 and 4.0
were used for declaring suggestive QTLs and significant
QTLs, respectively. These threshold values had been
used for declaring a QTL in our previous studies (Guo
et al. 2005, 2006a) where single population analyses on
Hamilton · PI 90763 and Magellan · PI 404198A
populations were conducted using CIM. They were
approximate to genome-wide type I error=0.63 (the
suggestive level) and 0.05 (the significant level), respec-
tively. A suggestive level often gives false positive QTL
but is worth reporting if accompanied with an appro-
priate warning label, so that discovery of a QTL may not
be delayed. A QTL is usually declared at genome-wide
type I error=0.05 (Lander and Kruglyak 1995).

Results

Soybean cyst nematode is the most important pest of
soybean in the world (Wrather et al. 1995, 2001). QTL
analysis have been extensively studied for resistance to
SCN in soybean (see summaries by Concibido et al.
2004; Guo et al. 2006b). But previous studies used single
population-based methods. In this section, we demon-
strated pooled analysis using the two available popula-
tions. SCN populations are described in two ways. One
is the race determination test (Schmitt and Shannon
1992). The other is the HG type classification system
recently published by Niblack et al. (2002). For conve-
nience of comparison to earlier studies, the former one
was used below.

Single population analyses using LSCIM

In order to be compared with the pooled analysis below,
the analyses on Hamilton · PI 90763 and Magellan · PI
404198A populations were individually conducted using
LSCIM. QTLs were found on LGs G, B1 and J in
soybean PI 90763 and on LGs G and B1 in soybean PI
404198A for resistance to race 2 (Table 1). QTLs were
identified on G, B1 and E in PI 90763 and on LGs B1
and N in PI 404198A for resistance to race 5 (Table 1).
Statistical significance for QTL on LG G for resistance
to race 5 in PI 404198A (LOD=2.5) did not reach but
was close to the suggestive level.
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Pooled analysis using LSCIM

In order to test if a QTL exists at a putative position, the
F vs. R1 pooled analysis on data from Hamilton · PI
90763 and Magellan · PI 404198A populations was
conducted using LSCIM. QTLs on LGs G, B1 and J were
found for resistance to race 2 whereas QTLs on G, B1
and E were detected for resistance to race 5 (Table 2).
Statistical significance for QTL on LGN for resistance to
race 5 identified by the above single population analysis
in PI 404198A did not reach the suggestive level in the
pooled analysis, indicating that there was no strong evi-
dence, as a whole, from two populations to support the
existence of a QTL on LG N. Compared with single
population analyses above, no additional QTL was de-
tected by the pooled analysis. The 1-LOD confidence
intervals of the QTLs on LGs G, B1 and J for resistance
to race 2 identified by the pooled analysis overlapped
substantially with the ones of the QTLs on LGs G, B1,
and J for resistance to race 2 identified by single popu-
lation analyses in one or both PI 90763 and PI 404198A
(Table 1 vs. Table 2). The 1-LOD confidence intervals of
the QTLs on LGs G, B1 and E for resistance to race 5
identified by the pooled analysis also overlapped sub-
stantially with the confidence intervals of the QTLs on
LGs G, B1 and E for resistance to race 5 identified by
single population analyses in one or both PI 90763 and PI
404198A (Table 1 vs. Table 2). Therefore, the F vs. R1

pooled analysis was consistent with the above single
population analyses. Compared with single population
analyses, however, the F vs. R1 pooled analysis showed
significantly increased LOD values on the QTL candi-
date regions (the 1-LOD confidence interval regions in
Table 2) of LGs G and B1 for resistance to races 2 and 5
where a QTL was detected by single population analyses
in both PI 90763 and PI 404198A (Fig. 1). But, the F vs.
R1 analysis showed slightly decreased LOD values on the
QTL candidate regions of LG J for resistance to race 2
and of LG E for resistance to race 5 where a QTL was
identified in only one of the two populations (Fig. 1).

If the QTL carried by PI 90763 were located away
from the one by PI 404198A on a chromosome, bi-peaks
should be expected on the plot of LOD against a linkage
group map in the F vs. R1 analysis. No obvious bi-peaks
appeared on LGs G and B1 for resistance to races 2 and
5 (Fig. 1), indicating that QTLs on LG G and B1
identified in PI 90763 may be located on the same locus
or closely linked with those on LGs G and B1 in PI
404198A for resistance to races 2 and 5.

The 1-LOD confidence intervals of QTLs on LGs G
and B1 for resistance to race 2 overlapped substantially
with the ones on LGs G and B1 for resistance to race 5
in the pooled analysis (Table 2), respectively, indicating
that QTLs on LGs G and B1 for resistance to race 2 may
be the same or closely linked with the ones on LGs G
and B1 for resistance to race 5, respectively.

The F vs. R1 pooled analysis did not provide infor-
mation on existence of a QTL in specific populations. In
order to know this information, the F vs. R2 and F vs.
R3 pooled analysis or single population analyses on
individual populations need to be conducted. In this
study, phenotypes standardized in residual values were
used for the pooled analysis. Nearly the same curves in
the plot of LOD against a linkage group map were
produced by the pooled analysis (F vs. R2, F vs. R3) and
single population analyses on corresponding popula-
tions, as expected (data not shown). However, if residual
variances were not equal among populations (the origi-
nal data of this study gave significant differences for
residual variance between the two populations), more
QTLs were declared by the pooled analysis (F vs. R2, F
vs. R3) in the population with the larger residual vari-
ance and fewer QTLs were declared in the population
with the smaller residual variance (data not shown).

In order to determine if the QTLs on LGs G and B1
carried by PI 90763 are the same or different in gene
effect from the ones on G and B1 in PI 404198A for
resistance to races 2 and 5, the F vs. R4 pooled analysis
was conducted on LGs G and B1 using LSCIM. It
showed that QTLs on G and B1 carried by PI 90763
were not significantly different in gene effect from QTLs
on LGs G and B1 in PI 404198A (LOD > 3.0 in F vs.
R4 analysis), respectively, for resistance to races 2 and 5
(Table 3, Fig. 1).

The most significant distinction of LSCIM pooled
analysis described by this study from the LSIM pooled
analysis by Walling et al. (2000) is that cofactor markers

Table 2 F versus R1 pooled analysis on combined data from
multiple populations using least square composite interval mapping

SCN races Linkage groups Positiona 1 LOD CIb LOD R2 (%)c

II G 2.0 0–6.0 10.3g 10.8
B1 118.5 108.5–122.5d 7.3g 7.8
J 75.5 59.5–89.5d 4.3g 4.8

V G 2.0 0–8 6.2g 6.9
B1 112.5 104.5–118.5 10.8g 11.2
Ee 39.3 25.3–55.3 4.9g 5.6
N 50.3 36.3–76.3 2.6 3.2

F versus R1 pooled analysis: F: the full model, R1: the reduced
model (R1). This analysis was used to test if a QTL exists at a
putative position
aDistance from the start of a linkage group on the soybean com-
posite linkage map
b1-LOD confidence interval
cA proportion of the total variation explained by a QTL given the
other QTLs (cofactor markers). It is defined as SSE(F)�SSE(R)/
SSE (X), where SSE(F) is error sum of square associated with the
full model (F) (QTL exist in both populations), SSE(R) error sum
of square associated with reduced model (R1) (no QTL exist in any
populations), and SSE(X) total sum of square excluding the sum of
square due to differences among populations
dThe end of the part of a linkage group that was searched for a
QTL in this study
eTwo peaks occurred on this chromosome but their 1-LOD confi-
dence intervals overlapped substantially (Fig. 2). One QTL was
declared for the peak with the highest LOD on this chromosome.
The 1-LOD confidence interval covered the 1-LOD confidence
intervals of both peaks. In order to exclude or confirm that closely
linked QTLs may exist, fine mapping is needed
fSuggestive QTL (LOD ‡ 3.0, genome-wise type I error = 0.63)
gSignificant QTL (LOD ‡ 4.0, genome-wide type I error = 0.05)
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were used for reducing the interfering effects of QTLs
located elsewhere on the genome. In order to examine
the effect of cofactor markers on the pooled analysis, the
F vs. R1 pooled analysis was also conducted using
LSIM, which is different from LSCIM by the fact that
no cofactor markers were included in the models. The
same QTLs were declared by LSIM pooled analysis and
LSCIM pooled analysis (Table 2 vs. Table 4). However,
LSCIM pooled analysis showed significantly increased
LOD values on the QTL candidate regions of LGs B1
and J for resistance to race 2 and of LGs B1 and E for
resistance to race 5 (Fig. 2b is presented as an example).
LSCIM and LSIM pooled analyses showed similar LOD
values on LG G for resistance to races 2 and 5 (Fig. 2a is
presented as an example). In conclusion, inclusion of
cofactor markers in the pooled analysis may increase the
LOD values and therefore it may be favorable to pooled
analysis.

Discussion

Comparison of LSCIM pooled analysis with CIM single
population analyses

Composite interval mapping (CIM) (Zeng 1994) is the
most commonly used method for QTL analysis at this

time. In our previous studies (Guo et al. 2005, 2006a),
we analyzed the data from Hamilton · PI 90763 and
Magellan · PI 404198A separately using CIM and LG
maps constructed in the respective experiments. Results
are summarized in Table 4, where declared QTLs were
projected on the composite linkage map used by this
study based on the relative positions of QTLs between
their two flanking markers. LSCIM and CIM single
population analyses gave similar results (Table 1 vs.
Table 5). The same QTLs were detected by LSCIM and
CIM. The differences of QTL positions between LSCIM
and CIM were between 0 and 6.3 cM (three test posi-
tions only) (Table 1 vs. Table 5). In most cases, CIM
showed larger LOD than LSCIM. These differences may
be partly due to the use of different LG maps used by the
LSCIM and the CIM.

Compared with CIM single population analyses,
LSCIM F vs. R1 pooled analysis showed a large increase
for the highest LOD value on LGs G and B1 for resis-
tance to race 2 and on LG B1 for resistance to race 5
where a QTL was detected in both populations (Table 2
vs. Table 5). LSCIM F vs. R1 pooled analysis, however,
showed a decrease for the highest LOD value on LG G
for resistance to race 5. This may be due to a large dif-
ference for LOD value between the two populations in
single population analyses. LSCIM F vs. R1 pooled
analysis showed a decrease for the highest LOD value on
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Fig. 1 Least square composite
interval mapping (LSCIM)
pooled analysis and single
population analyses on soybean
populations Hamilton · PI
90763 and Magellan · PI
404198A for resistance to
soybean cyst nematode races 2
and 5. LSCIM F versus R1:
pooled analysis for testing if a
QTL exists at a putative
position. LSCIM F versus R4:
pooled analysis for testing if
QTLs carried by different
populations have a significant
difference in gene effect. PI
90763: single population
analysis on Hamilton · PI
90763 population using
LSCIM. PI 404198A: single
population analysis on
Magellan · PI 404198A
population using LSCIM
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LG J for resistance to race 2 and on LGs E and N for
resistance to race 5 where a QTL was detected in only
one of the two populations.

Uses of pooled analysis

No additional QTL was declared by the pooled analysis
compared with single-population-based analysis. But
this study and Li et al. (2005) demonstrates that where a

QTL was shared among different populations, pooled
analysis showed a significantly increased statistical evi-
dence (LOD) for QTL over single population-based
analyses. It is expected that a QTL will be detected by
the pooled analysis but it may not be detected by single
population analyses if a QTL with small gene effect is
shared by different populations. Pooled analysis on data
from genetically similar populations, therefore, may
have higher power of QTL detection than single popu-
lation-based analyses. In this study, pooled analysis did
not show significantly increased precision of QTL
detection (narrowing down the confidence interval of a
QTL) (Table 1 vs. Table 2 for 1 LOD CI). But, Li et al.
(2005) and Walling et al. (2000) showed that pooled
analysis increased the precision of QTL detection. In
order to get a comprehensive understanding of the
power and precision of pooled analysis, it would be
helpful to conduct an extensive simulation study.

A novel method has been developed for identifying
the gene underlying a QTL which combines multiple
cross mapping with molecular marker haplotype analy-
sis (Hitzemann et al. 2003; Park et al. 2003; Wang et al.
2004). This method is based on the fact that the gene and
its causative polymorphism(s) underlying a QTL should
be the ones which are shared among inbred lines with
the same alleles but differ among inbred lines with dif-
ferent alleles. Therefore, comparison in gene effect of a
QTL among inbred lines is the key for this method. As
stated above, pooled analysis can be used for examining
differences of a QTL among different mapping popula-
tions (lines). Pooled analysis would make an important
contribution in identifying the genes underlying the
QTLs.

Table 3 F versus R4 pooled analysis using least square composite
interval mapping

SCN races Linkage
groups

1-LOD regiona LODb

II G 0–6.0 0.4
B1 108.5–122.5c 1.1

V G 0–8 0.9
B1 104.5–118.5 1.3

F versus R4 pooled analysis: F: the full model, R4: the reduced
model (R4). This analysis was used to test if QTLs carried by
different populations have a significant difference in gene effect
a1-LOD confidence interval in Table 2
bThe largest LOD on the 1-LOD region. If LOD < 3.0, it was
concluded QTLs carried by different populations may have no
significant difference in gene effect
cThe end of the part of a linkage group that was searched for a
QTL in this study

Table 4 F versus R1 pooled analysis on combined data from
multiple populations using least square interval mapping (LSIM)

SCN
races

Linkage
groups

Positiona 1 LOD CIb LOD R2 (%)c

II G 2.0 0.0–6.0 10.3g 11.9
B1 118.5 106.5–122.5d 6.2g 7.7
J 75.5 65.5–89.5d 3.2f 4.5

V G 0.0 0.0–8.0 5.8g 7.5
B1 112.5 104.5–122.5d 9.6g 11.2
Ee 39.3 23.3–61.3 3.8f 5.4
N 58.3 36.3–58.3 2.7 4.0

F versus R1 pooled analysis: F: the full model, R1: the reduced
model (R1). No cofactor markers were included in LSIM. This
analysis was used to test if a QTL exists at a putative position
aDistance from the start of a linkage group on the soybean com-
posite linkage map
b1-LOD confidence interval
cA proportion of total variation explained by a QTL. It is defined
as SSE(F)�SSE(R)/SSE (X), where SSE(F) is error sum of square
associated with full model (F) (QTL exist in both populations),
SSE(R) error sum of squares associated with reduced model (R1)
(no QTL exist in any populations), and SSE(X) total sum of
squares excluding the sum of square due to differences among
populations
dThe end of the part of a linkage group that was searched for QTL
in this study
eTwo obvious peaks occurred on this chromosome but their 1-LOD
confidence intervals overlapped substantially (Fig. 2). One QTL
was declared for the peak with the highest LOD on this chromo-
some. The 1-LOD confidence interval covered the 1-LOD confi-
dence intervals of both peaks. In order to exclude or confirm that
closely linked QTLs may exist, fine mapping is needed
fSuggestive QTL (LOD ‡3.0, genome-wise type I error=0.63)
gSignificant QTL (LOD ‡4.0, genome-wide type I error=0.05)
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